Destructive or Cooperative Attack of Iodide Anions on Alkyltriiodophosphonium Cations: Elimination of Iodine in Solution and Layer Structures in the Solid State

Wolf- Walther du Mont,t Volkmar Stenze1,t Jorg Jeske,? Peter C. Jones,**+ Angelika Sebald,***** Siegfried Pohl,^{*,§} Wolfgang Saak,[§] and Michael Bätcher[†]

Institut fur Anorganische und Analytische Chemie der Technischen Universitat, Hagenring 30, Postfach 3329, D-38023 Braunschweig, Germany, Bayerisches Geoinstitut, Universitat Bayreuth, Postfach 101251, D-95444 Bayreuth, Germany, and Fachbereich Chemie der Universitat, Carl von Ossietzky-Strasse 9-11, D-26129 Oldenburg, Germany

Received May 18, 1993e

Solid-state and solution ³¹P NMR shifts of t-BuPI₄ and crystal structure determinations of t-BuPI₄, i-PrPI₄, and MePI₄ reveal that alkyltetraiodophosphorus compounds RPI₄ (R = t-Bu (1) , *i*-Pr (2) , Me₃SiCH₂ (3) , Me (4)) in the solid state involve μ_3 -bridging I \cdots I interactions between RPI₃+ cations and I- anions (leading to the formation of layer structures (2, 4) or a 3-dimensional network (1)) whereas, in CS₂/CD₂Cl₂ solutions, deiodination by nucleophilic I-anions causes all RPI₄ compounds and PI₅ to decompose into the iodophosphanes RPI₂ or PI₃ and molecular iodine. **1** crystallizes in the cubic space group I_2 , I_3 , with $a = 13.613(2)$ Å, $V = 2522.7(6)$ Å³, and $Z = 8$. **2** crystallizes in the monoclinic space group $P2_1/c$, with $a = 6.686(2)$ Å, $b = 19.918(5)$ Å, $c = 8.961(3)$ Å, $\beta = 97.41(2)$ °, *V* $= 1183.4(6)$ Å³, and $Z = 4$. **4** crystallizes in the orthorhombic space group Pbcm, with $a = 6.031(2)$ Å, $b = 18.426(7)$ \AA , $c = 8.741(3)$ \AA , $V = 971.4(3)$ \AA ³, and $Z = 4$. Cation-anion I⁻¹ interactions of solid RPI₄ are stronger than molecule-ion interactions within the related anion network of solid PhCH2NMe3+HC14- **(S),** which crystallizes in the monoclinic space group P_21/c , with $a = 8.200(1)$ Å, $b = 13.723(1)$ Å, $c = 16.216(1)$ Å, $\beta = 91.32(2)$ °, $V =$ 1824.3(3) \hat{A}^3 , and $Z = 4$.

Introduction

The existence of phosphorus pentaiodide has been the subject of contradictory reports,1-3 and little is known about the nature of the related alkylphosphorus tetraiodides RPI_{4.4,5} Recently it was recognized that phosphane and arsane diiodides $R_3E1_2 (R_3E)$ $= Ph₃As, ⁶ t-Bu₃P, ⁷ Ph₃P⁸), containing linear moieties E-I-I, may$ equivalently be described either as molecular adducts of R_3E donor molecules with molecular iodine or as iodophosphonium or iodoarsonium iodides with appreciable cation-anion 1-1 $interactions.⁹⁻¹¹$ In each case, the tertiary phosphane or arsane and iodide anions compete for coordination with the central iodine atom. Increasing donor strength of R_3E toward iodine leads to stronger E-I and weaker I-I bonds ($Ph₃As < Ph₃P < t-Bu₃P$).

- ¹ Fachbereich Chemie der Universität.
- Abstract published in *Aduance ACS Abstracts,* February 15, 1994. (1) *Gmelins Handbuch der anorganischen Chemie,* 8th *ed.;* Verlag Chemie:
- Weinheim, 1965; Phosphor Teil C, p 525. (2) Feshenko, N. G.; Kostina, V. G.; Kirsanov, A. *Zh. Obshch. Khim.* 1978, 48, 222.
- (3) Tornieporth-Oetting, I.; Klapötke, T. J. Chem. Soc., Chem. Commun. 1990, 132.
- (4) Ginsburg, V. A.; Privezentsva, N. F. *Zh. Obshch. Khim.* 1958,28,736. (5) Feshchenko, N. G.; Mel'nichuk, E. A. *Zh. Obshch. Khim.* 1978,48,365.
- Kudryavtseva, L. I.; Feshchenko, N. G.; Povolotskii, M. I. *Zh. Obshch. Khim.* 1983, *53,* 2684.
- (6) Mc Auliffe, C. A.; Beagley, B.; Gott, G. A.; Mackie, **A.** G.; Mac Rory, P. P.; Pritchard, R. G. *Angew. Chem.* 1987,99,237; *Angew. Chem., Int. Ed. Engl.* 1987,26,264. Beagley, B.;Colburn,C. B.;Elsayraf,O.; Gott, G. A.; Kelly, D. G.; Meakie, A. G.; Mc Auliffe, C. A.; Mac Rory, P. **P.;** Pritchard, R. G. *Acta Crystallogr.* 1988, C44, 38.
- (7) du Mont, W.-W.; Bitcher, M.; Pohl, **S.;** Saak, W. *Angew. Chem.* 1987, 99, 912.
-
- **(8) Godfrey,S.M.;Kelly,D.G.;McAuliffe,C.A.;Mackie,A.G.;Pritchard,** R. G.; Watson, **S.** M. J. *Chem. Soc., Chem. Commun.* 1991, 1163. (9) du Mont, W.-W.; Kroth, H. J. J. *Organomet. Chem.* 1976, *113,* C35. **(IO)** Kuhn, N.; Jiischke, **R.;** du Mont, W.-W.; BBtcher, M.; Bliser, D.; Base,
- **R.** *Z. Naturforsch.* 1989, 844, 9. (1 1) Bitcher, M.; du Mont, W.-W.; Pohl, **S.;** Saak, W. *Phosphorus. Sulfur Silicon* 1990, 49/50, 147.

Likewise, P-I bond strengths increase with decreasing donor properties of the anions. $(I^{-6,7} < I_3^{-12} \approx IML_n^{10,11,13,14})$.

$$
R_3P \rightarrow I^* \leftarrow X^-
$$

Compared with tertiary phosphanes, phosphorus triiodide is expected to be a much poorer donor toward iodine, but with the help of the weakly donating AlI_4 ⁻ or AsF₆⁻ anions, even the PI₄⁺ cation has been stabilized.^{3,13} In PI₅, weakly donating PI₃ has to compete with the I- anion; this leads to the intrinsically low stability of the pentaiodide. Compared with PI₃, alkyldiiodophosphanes RPIz should be slightly better donors toward iodine. Indeed, reports **on** the preparation of alkylphosphorus tetraiodides RP14 have appeared, but structures of these compounds are not known. While the existence of PI₅ still appears doubtful, alkylphosphorus tetraiodides might exhibit properties similar to those of PI_5 in solution and in the solid state.⁵ Their investigation should allow a new approach to understanding contradictory previous reports on the PI₅ question.

Experimental Section

All I3C and 31P CP MAS spectra were obtained on a Bruker MSL **300** FT-NMR **spectrometer,operatingat** 75.47 MHz (I3C) and 121.50 MHz (31P), respectively. Chemical shifts are given with respect to external TMS (13 C) and to external H₃PO₄ (31 P). The ¹H 90° pulse length was set to $5 \mu s$; the Hartmann-Hahn matching condition was optimized using adamantane (^{13}C) and brushite (^{31}P) . Contact times for the CP experiments were 1 ms for both ¹³C and ³¹P. Relaxation delays of 5 s were sufficient; between 48 and 800 transients had to be accumulated.

Alkylphosphorus tetraiodides RPI4 **(1-4)** were prepared as red solids by addition of iodine in CH_2Cl_2 to CH_2Cl_2 solutions of RPI_2 ; PI_5 (a solid of this composition) was isolated by evaporation of a $PI_3/I_2 CS_2$ solution.¹⁵ PhCH₂NMe₃⁺CHI₄⁻ (5) was obtained by addition of PhCH₂NMe₃⁺I⁻ to CHI₃ in CH₃OH solution.

- (12) Cotton, F. A.; Kibala, P. A. J. Am. Chem. Soc. 1987, 109, 3308.
(13) Pohl, S. Z. Anorg. Allg. Chem. 1983, 498, 15, 20.
(14) Mc Auliffe, C. A.; Stephen, M. G.; Mackie, A. G.; Pritchard, R. G.
Angew. Chem. 1992, 104, 99
- (15) van Arkel, A. F. *Research* 1949, 2, 312 (cited in ref 1).

t Institut fur Anorganische und Analytische Chemie der Technischen Universität.

[‡] Universität Bayreuth.

Table 1. Crystallographic Data for **1,** 2, **4,** and **5**

	t-BuPI4 (1)	i-PtPI4 (2)	MePI ₄ (4)	$PhCH2NMe3$ +CHI ₄ - (5)
formula	$C_4H_9I_4P$	$C_3H_7I_4P$	CH ₃ L ₄ P	$C_{11}H_{17}LN$
fw	595.68	581.66	553.60	670.88
space group	12.3	$P2_1/c$	Pbcm	$P2_1/c$
a, Å	13.613(2)	6.686(2)	6.031(1)	8.200(1)
b, Å	13.613(2)	19.918(5)	18.426(4)	13.723(1)
c, Å	13.613(2)	8.961(3)	8.741(2)	16.216(1)
β , deg		97.41(2)		91.32(2)
V, \mathbf{A}^3	2522.7(6)	1183.4(6)	971.4(3)	1824.3(3)
z	8	4	4	4
T, °C	-100	-95	-95	23
μ , mm ⁻¹	9.952	10.603	12.907	6.745
$d_{\rm calcd}$, Mg/m ³	3.137	3.265	3.786	2.443
R^a	0.0235	0.0343	0.0284	0.0408
$R_{\rm w}$ ^b				0.0484c
$R_{\rm w}(F^2)^d$	0.0530	0.1033	0.0726	

 $= \sigma^2(F) + 0.0002F^2$. *d* $R_w(F^2) = \left[\sum [w(F_0^2 - F_0^2)^2]/\sum [w(F_0^2)^2]\right]^{1/2}$; all reflections. $R = \sum |F_{\rm o}| - |F_{\rm o}| / \sum |F_{\rm o}|$, $\delta R_{\rm w} = [\sum w(|F_{\rm o}| - |F_{\rm o}|)^2 / \sum w(|F_{\rm o}|)^2]^{1/2}$, ϵw^{-1}

1-5 and PI₅ gave satisfactory elemental analyses. 1-4 are moderately soluble in CS_2 and slightly soluble in CH_2Cl_2 , which is suitable for recrystallizations.

1. Mp: 112 °C.⁵ Anal. Calcd for C₄H₉I₄P (M_r = 595.71): C, 8.1; H, 1.5; P, 5.2. Found: C, 8.0; H, 1.4; I, 85.1; P, 5.2. ³¹P NMR (CS₂/ CD₂Cl₂): δ 165.4. ¹H NMR: δ 1.1 (d), ³J(PH) 14 Hz[\equiv t-BuPI₂].

2. Mp: 95 °C dec. Anal. Calcd for C₃H₇I₄P (M_r 581.68): C, 6.19; H, 1.20; P, 5.33. Found: C, 5.92; H, 1.20; P, 5.43. ³¹P NMR (CS₂/ CDCI3): **6** 156.9. 'H NMR: **6** 1.39 (dd), 3J(PH) 14.48 Hz, 'J(HH) $= 6.74$ Hz (CH₃); δ 2.13 (qd), ²J(PH) = 20.27 Hz, ³J(HH) = 6.74 Hz $(CH).$

3. Mp: 119 °C dec. Anal. Calcd for C₄H₁₁I₄PSi (M_r 625.81): C, 7.7; H, 1.76. Found: C, 7.6; H, 1.75. ³¹P NMR (CS₂/CDCl₃): δ 143.5. IH NMR: δ 0.25 ((CH₃)₃Si); δ 3.04 (d), ²J(PH) = 18 Hz (CH₂).

4. Mp: 157 °C (ref 4: 156 °C). Anal. Calcd for CH₃I₄P (M_r 553.63): C, 2.17; H, 0.54. Found: C, 2,08; H, 0.50. 31P NMR $(CS_2/CDCI_3): \delta 121.7.$ ¹H NMR: $\delta 3.27$ (d), ²J(PH) = 20.7 Hz.

5. Mp: 132 °C dec. Anal. Calcd for $C_{11}H_{17}I_4N$ ($M_r = 670.88$): C, 19.69; H, 2.55. Found: C, 20.13; H, 2.65.

X-ray Structure Determinations. X-ray data sets for 1,2, and **4** were collected to 26 50° with monochromated Mo $K\alpha$ radiation ($\lambda = 0.710$ 73 A) on a Siemens R3 four-circle diffractometer fitted with an LT-2 lowtemperaturedevice. Orientation matrices were refined fromsetting angles of 50 reflections in the 2 θ range 20-23°. Absorption corrections were based on ψ -scans. Structures were solved by the heavy-atom method (2, **4)** or direct methods **(1)** and refined using the program SHELXL-93 (G. M. Sheldrick, University of Gattingen) anisotropically on *P.* H atoms were included using rigid methyl groups or a riding model. X-ray data for 5 were collected to 2 θ 47° with monochromated Mo $K\alpha$ radiation on a StoeSiemens AED-2 four-circle diffractometer. Absorption corrections were based on ψ scans. The structure was solved by direct methods and refined anisotropically on *F,* using the program Siemens SHELXTL PLUS. H atoms were included using a riding model.

Crystallographic data for **1,** 2, **4,** and **5** are collected in Table 1.

Results

Dissolving PI_5 (a solid of this analytical composition, made by evaporation of a CS_2 solution containing equivalent amounts of PI_3 and I_2^{15}) in CS_2/C_6D_6 leads to a dark red solution which contains PI_3 (the slightly broadened $31P NMR$ signal appears at $+173$ ppm) and I_2 (in toluene, UV/vis absorptions at 497 and 307 nm). Thus, in this solvent PI₅ undergoes almost complete dissociation into the starting materials. The 31P NMR signal previously assigned to $\text{PI}_4 + \text{I}^-$ ($\delta + 182$ ppm in CH₃I solution²) might also be due to PI₃; for the PI₄⁺ cation (even with some I-I cation-anion interaction) a 3lP NMR resonance far upfield would be expected. In the case of t -Bu₃P-I-I, cation-anion interactions lead to slight upfield shifts (t-Bu₃PI+BF₄-in CD₂Cl₂, δ (³¹P) 114.9 ppm; t -Bu₃PI₂ in CD₂Cl₂, δ ⁽³¹P) 82 ppm; see Table 3). A solidstate CP MAS 31P NMR spectrum obtained at 121.50 MHz

Table 2. Atomic Coordinates (X104) and Equivalent Isotropic Displacement Parameters $(A^2 \times 10^3)$ for 1, 2, 4, and 5

	x	у	z	$U(\mathrm{eq})^d$			
t-BuPL (1)							
I(1)	3807.4(4)	1310.2(4)	6664.8(4)	32.1(2)			
I(2)	5038.9(4)	38.9(4)	4961.1(4)	29.2(2)			
P	2734.2(14)	2265.8(14)	7734.2(14)	26.4(8)			
C(1)	1921(6)	3079(6)	6921(6)	24(3)			
C(2)	1377(6)	2396(6)	6215(5)	34(2)			
i -PrPI ₄ (2)							
I(1)	6823.0(7)	2528.2(3)	2449.8(5)	28.9(2)			
I(2)	2594.3(7)	3561.3(3)	4389.5(5)	28.4(2)			
I(3)	2690.0(7)	3626.2(3)	34.0(5)	27.3(2)			
I(4)	9415.8(7)	1146.9(3)	1918.3(5)	28.5(2)			
P	4799(3)	3540.0(10)	2438(2)	24.4(4)			
C(1)	6450(10)	4274(4)	2684(9)	30(2)			
C(3)	5249(13)	4925(4)	2722(10)	39(2)			
C(2)	7843(11)	4298(5)	1470(10)	41(2)			
		MePI ₄ (4)					
I(1)	12726.7(8)	1189.6(2)	268.9(5)	26.1(2)			
I(2)	8442.6(11)	2454.6(3)	2500	25.7(2)			
I(3)	6394.3(10)	4116.6(3)	2500	25.7(2)			
P	10366(4)	1299.2(12)	2500	23.5(5)			
Ċ	8378(16)	549(5)	2500	32(2)			
PhCH ₂ NMe ₃ +CHI4-(5)							
I(1)	5045(1)	750(1)	3416(1)	55(1)			
I(2)	2177(1)	1109(1)	4997(1)	65(1)			
I(3)	2073(1)	2641(1)	3175(1)	65(1)			
I(4)	1075(1)	4788(1)	2083(1)	58(1)			
C(1)	2627(10)	1225(7)	3706(6)	55(3)			
N	7344(9)	2494(5)	1153(5)	60(3)			
C(2)	7383(14)	3224(7)	486(8)	85(5)			
C(3)	9029(14)	2122(8)	1308(8)	88(5)			
C(4)	6812(19)	2983(10)	1926(8)	120(6)			
C(5)	6166(12)	1665(8)	967(7)	72(4)			
C(6)	6609(10)	1023(6)	230(6)	52(3)			
C(7)	7486(12)	192(7)	370(7)	72(4)			
C(8)	7847(15)	$-412(9)$	$-263(10)$	93(5)			
C(9)	7379(17)	–184(12)	$-1027(9)$	102(6)			
C(10)	6494(22)	643(13)	$-1197(8)$	120(7)			
C(11)	6087(15)	1233(9)	$-568(7)$	90(5)			

^{*a*} U (eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table 3. Comparison of Solution and Solid-state NMR Data for t -Bu₃PI₂ and t -BuPI₄

solution	solid		
δ ⁽³¹ P)	$\delta(^{13}C)$	δ ⁽³¹ P)	$\delta(^{13}C)$
	t -Bu ₃ PI ₂		
$+82.0$ (CD ₂ Cl ₂)	$+30.9$ (d) $\left(CD_2Cl_2\right)$ $+43.5$ $1J(31P,13C) \pm 6.9 Hz$ $2J(31P,13C)$ not resolved	a $+93.4$	31.7 $CH3$) 44.9 $(CC)_3^b$
$+115(D_2O)$			
+165 (CS_2/CD_2Cl_2)	t-BuPI ₄ $+25.9$ (d) $\rm (CD_2Cl_2)$	$-49.2c$	28.9 (CH ₃)
$(=t-BuPI2)$	$(=t-BuPI2)$ $2J(31P,13C) \pm 19.6 Hz$ 1		45.9 $(CC_3)^b$

^{*a*} Fairly broad resonance; $\nu_{1/2} \approx 400$ Hz; no spinning sidebands with ν_{rot} = 3.75 kHz. ^b Broad resonance; ¹J(³¹P₁¹³C) not resolved. ^c Sharp resonance; substantial chemical shift anisotropy; close to axially symmetric tensor pattern with $\sigma_{\perp} - \sigma_{\parallel} \approx 300$ ppm. ^{*d*} CC₃ not resolved (low concentration). [t-BuPI₂ in CD₂Cl₂: δ 27.1 (d), ²J(³¹P,¹³C) ±19.6 Hz; δ 32.5 (d), ¹J(³¹P,¹³C) ±57 Hz].

from powdered t -Bu₃PI₂ (δ ⁽³¹P) 93.4 ppm) confirms that the I-I interactions of this compound in polar aprotic solvents are similar to those in the solid state (Table 3).

Solid-state 3lP NMR spectroscopy is even more informative for t -BuPI₄ (1),⁵ a red solid that could be a model for the PI₅ system. Red crystalline 1 is easily obtained from t-BuPI₂ and I₂

Figure 1. ORTEP plot (50% probability ellipsoids) of **1.** H atoms are omitted for clarity. The atoms $\mathbf{I}(2)$, P, and $\mathbf{C}(1)$ lie along crystallographic 3-fold axes. Selected bond lengths and angles: $I(1)$ -P, 2.4384(12) Å; $I(1c) - I(2) - I(1), 105.70(2)$ °; $I(1a) - P - I(1), 110.89(7)$ °. $I(2)$ -I(1), 3.3443(8) Å; P-C(1), 1.918(14) Å; P-I(1)-I(2), 172.07(7)°;

in $CH₂Cl₂$ solution. In the solid state, the ³¹P NMR resonance of 1 (δ -49.2 ppm) appears far upfield ($\Delta\delta$ -215 ppm) from the educt t-BuPI₂. Considering the NMR properties of ¹²⁷I ($I = \frac{5}{2}$, 100% natural abundance), one might expect a major effect of the adjacent iodine nuclei on the appearance of the 3IP CP MAS spectra of t -BuPI₄(1) and t -Bu₃PI₂, such as line-broadening effects and/or splitting patterns¹² due to scalar and quadrupolar interactions $^{127}I^{-31}P$, if ^{127}I relaxation is sufficiently slow. This is apparently not the case; in both cases, fairly sharp $(t-Bu_3PI_2)$ and even very sharp (t-BuPI₄) ³¹P resonances are obtained, despite the fact that line-broadening effects or complex splitting patterns arising from such interactions have been widely observed for a number of combinations of (observed) spin **-1/2** nuclei adjacent to nuclei with $I > 1/2$.¹⁶ A remarkable feature of 1 is its decomposition in CS_2/CD_2Cl_2 solution into the P(III) compound t -BuPI₂ (δ ³¹P) +165 ppm) and molecular iodine. Similar to PI_3 , alkyldiiodophosphanes RPI_2 ($R = Me$, *i*-Pr, *t*-Bu, Me₃SiCH₂) are weak donors toward iodine. The corresponding alkylphosphorus tetraiodides RPI₄ (1, R = t-C₄H₉; 2, R = i -C₃H₇; 3, R $=$ Me₃SiCH₂; 4, R = CH₃⁴) exist obviously only in the solid state. Like $PI₅$, all these red solids give solutions that contain essentially only the P(III) compounds (t-BuPI₂, δ ⁽³¹P) 165; *i*-PrPI₂, δ ⁽³¹P) +157; Me₃SiCH₂PI₂, δ (³¹P) +144; MePI₂, δ (³¹P) +122) and molecular iodine; evaporation of the solvents allows recovery of the "iodine adducts" **1-4.**

$$
RPI2 + I2 \xrightarrow{\text{crystallisation}} RPI4
$$

dissolution

$$
ICS21 \t1 - 4
$$

$$
R = t-Bu, i-C3H7, (CH3)3SiCH2, CH5
$$

$$
\underline{1} \t2 \t3 \t4
$$

X-ray crystal structure determinations of t-BuPI4 **(l), i-PrPI4** (2) , and MePI₄ (4) (Figures 1-3) reveal I⁻¹ interactions between RP13+ cations and I- anions, leading to the formation of extended networks.

Each iodide anion forms three approximately orthogonal short contacts, one to each iodine atom of the cation, with $I - I = 3.3443 - I$ (8) **A (l),** 3.3189(9)-3.3513(11) **A (2),** or 3.3022(10), 3.3270-

Figure 2. Top: Packing diagram of **2** projected down the *6* axis. Radii are arbitrary; H atoms are omitted for clarity. There are two such layers per cell. Bottom: Bridging interaction of an iodide anion with cations of **2** shown by an ORTEP plot (50% probability ellipsoids). Selected bond lengths and angles: I(l)-P, 2.427(2) A; **P-C(** I), 1.828(8) A; I(1)- I(4), 3.3189(9) A; I(4)-I(3b), 3.3490(12) A; I(4)-I(2a), 3.3513(11) A; I(1)-I(4)-I(3b), 93.77(2)°; I(1)-I(4)-I(2a), 109.98(2)°; I(3b)-I(4)-I(2a), 97.87(3)°; P-I(1)-I(4), 171.55(5)°; I(1)-P-I(2), 113.67(8)°.

(8) **A (4).** The P-I bond lengths are closely similar, 2.4384(12) **A** for 1,2.424(2)-2.428(2) **A** for **2,** and 2.423(2), 2.424(2) **A** for 4, and the P-I \cdots I angles are all within 10 \degree of linear. Figure 3 (middle) shows that the connectivity of 12-membered $(CH_3P)_3I_9$ rings (of which every second member is a linearly two-coordinate iodine atom) forming a layer of **4** is related to the connectivity of chairlike P_6 rings within the layer structure of black phosphorus. The layers of **2** and 4 are topologically similar despite differences in their formal symmetry. The structuredetermination of 1 allows the assignment of the observed 3IP NMR upfield shift of 1 in the solid state unambiguously to t -BuPI₃⁺ cations triply coordinated by pyramidal μ_3 -bridging I- anions within a three-dimensional network.17

The I⁻¹ distances in solid 1, 2, and 4 are similar to the I⁻¹ bond length in solid t -Bu₃P-I⁻¹, which, as has been pointed out previously, can be regarded as an iodophosphonium iodide with significant I--I interaction or as a phosphane diiodide chargetransfer complex.^{7,9} For a rough estimation of the amount of polar cation-anion attraction to the 1-1 interaction in the layer structure of **1, 2,** and 4, a comparison of the cationic tripod acceptors RPI_3 ⁺ with the uncharged tripod acceptor CHI₃ is useful. With benzyltrimethylammonium iodide, CHI3 gives a solid adduct 5, in which CHI₃ acts as an acceptor toward three different I- ions and each I- anion coordinates I atoms of three

⁽¹⁶⁾ *See* for example: (a) Lycka, A.; Holecck, J.; Sebald, A,; Tkac, I. J. *Organomet. Gem.* **1991,409,331.** (b) Harris,R. **K.;Sebald,A.;** Furlani, D.; Tagliavivi, G. *Organometallics* **1988, 7, 388.** (c) Harris, R. **K.** J. *Map. Reson.* **1988,78,389.** (d) Apperley, D. C.; Haiping, **B.;** Harris, R. K. *Mol. Phys.* **1W9, 68, 1277** (and references therein).

⁽¹⁷⁾ Bätcher, M. Ph.D. Thesis, Universität Oldenburg, 1989.

Figure 3. Top: Packing diagram of **4** projected down the *b* axis. Radii are arbitrary; H atoms are omitted for clarity. There are two such layers per cell. Middle: Part of the packing diagram of **4** projected down the are omitted for clarity. The atoms P, C, I(2), and I(3) lie in a crystallographic mirror plane. Selected bond lengths and angles: I(1)- P, 2.423(2) A; P-C, 1.830(9) A; I(2)-1(3), 3.3022(10) **A;** 1(3)-1(1b), $3.3270(8)$ Å; P-I(2)-I(3), $173.38(7)^{\circ}$; I(1)-P-I(2), $110.76(6)^{\circ}$; I(2)- $I(3)$ - $I(1b)$, 95.25(2)°.

different CHI₃ molecules (Figure 4). The CHI₄- anion network of 5 is also related to the polymeric anion of PPh₄+CBr₅- (triply

Figure 4. ORTEP plot **(50%** probability ellipsoids) of **5.** Only the H atom at CHI₃ is shown. Selected bond lengths and angles: $I(1)-C(1)$, 3.730(1) Å; $I(4) - I(3) - C(1)$, 173.0(2)°; $I(1) - C - I(2)$, 111.9(4)°. 2.150(8) A; I(3)-1(4), 3.525(1) **A;** 1(1)-1(4A), 3.555(1) A; 1(2)-1(4B),

bridging Br anions).18 Compared with the 1-1 distances in the anion network of **5** (3.525, 3.555, and 3.730 **A;** see also CI4l9), the I-I distances between cations and anions of $RPI₄$ (3.30-3.36) **A)** are significantly shorter. Iodine atoms in iodophosphonium cations are more susceptible to I- attack than iodine atoms of uncharged iodomethanes. Appreciable 1-1 interaction was also found in the salt Ph_3P^+ -CH₂-I---I⁻, which contains a "cationic iodomethane".²⁰ Our results for the RPI₄ compounds allow us to predict that-although PI₅, like RPI₄, decomposes in solution due to I-I bond formation-solid $PI₅^{1,15}$ should also exhibit I-I interactions at the expense of some P-I bond strength compared with the known $PI_4 + AII_4 - .13$

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie (Germany). Crystal mounting oil (type RS3000) was kindly donated by Fa. Riedel de Haën.

Supplementary Material Available: Tables giving crystal data and details of the structure determination, bond lengths, bond angles, anisotropic thermal parameters, and hydrogen atom locations (1 1 pages). Ordering information is given on any current masthead page.

⁽¹⁸⁾ Lindner, H. J.; Kitschke-von Gross, **B.** *Chem. Ber.* **1976,** *109,* 314. Effenberger, F.;Podszum, W.;Schoeller, W. W.;Seufert, W.G.;Stohrer, E. **D.** *Chem. Ber.* **19l6,** *109,* 306.

⁽¹⁹⁾ Pohl, **S.** *Z. Krisfallogr.* **1982,** *159,* 211. **(20)** Lauritsen, **K.;** Vogt, **H.;** Riesel, L. *Proc. Int. Conf. Phosphorus Chem., 12th* **1992,** Abstract 1-92; *Phosphorus, Sulfur Silicon* **1993,** *77,* 21 1. Vogt, H.; Lauritsen, L.; Riesel, L.; von Löwis, M.; Reck, G. Z. *Nafurforsch.* **1994,** *498,* in press.